Solids, Liquids, Gases, and Plasmas
Concept 1. Solids, Liquids, Gases, and Plasmas

Lesson Objectives

- Describe matter in the solid state.
- State properties of liquid matter
- Identify properties of gases.
- Describe plasma.
- Explain the relationship between energy and states of matter.

Vocabulary

- energy
- gas
- kinetic energy
- kinetic theory of matter
- liquid
- plasma
- solid
- states of matter

Introduction

States of matter are the different forms in which matter can exist. Look at Figure 1.1. It represents water in three states: solid (iceberg), liquid (ocean water), and gas (water vapor in the air). In all three states, water is still water. It has the same chemical makeup and the same chemical properties. That’s because the state of matter is a physical property.

How do solids, liquids, and gases differ? Their properties are compared in Figure 1.2 and described below. You can also watch videos about the three states at these URLs:

http://www.youtube.com/watch?v=s-KvoVzukHo&feature=related (0:52)

http://www.youtube.com/watch?v=NO9OGeHgtBY&feature=related (1:42)
FIGURE 1.1
This photo represents solid, liquid, and gaseous water. Where is the gaseous water in the picture?

FIGURE 1.2
These three states of matter are common on Earth. What are some substances that usually exist in each of these states?
Solids

Ice is an example of solid matter. A solid is matter that has a fixed volume and a fixed shape. Figure 1.3 shows examples of matter that are usually solids under Earth conditions. In the figure, salt and cellulose are examples of crystalline solids. The particles of crystalline solids are arranged in a regular repeating pattern. The steaks and candle wax are examples of amorphous (“shapeless”) solids. Their particles have no definite pattern.

Liquids

Ocean water is an example of a liquid. A liquid is matter that has a fixed volume but not a fixed shape. Instead, a liquid takes the shape of its container. If the volume of a liquid is less than the volume of its container, the top surface will be exposed to the air, like the oil in the bottles in Figure 1.4.

FIGURE 1.3
The volume and shape of a solid can be changed, but only with outside help. How could you change the volume and shape of each of the solids in the figure without changing the solid in any other way?

FIGURE 1.4
Each bottle contains the same volume of oil. How would you describe the shape of the oil in each bottle?
Two interesting properties of liquids are surface tension and viscosity.

- Surface tension is a force that pulls particles at the exposed surface of a liquid toward other liquid particles. Surface tension explains why water forms droplets, like those in Figure 1.5.
- Viscosity is a liquid’s resistance to flowing. Thicker liquids are more viscous than thinner liquids. For example, the honey in Figure 1.5 is more viscous than the vinegar.

You can learn more about surface tension and viscosity at these URLs:

- http://www.youtube.com/watch?v=u5AxIJSiEEs (1:40)

Gases

Water vapor is an example of a gas. A gas is matter that has neither a fixed volume nor a fixed shape. Instead, a gas takes both the volume and the shape of its container. It spreads out to take up all available space. You can see an example in Figure 1.6.
Plasmas

You’re probably less familiar with plasmas than with solids, liquids, and gases. Yet, most of the universe consists of plasma. Plasma is a state of matter that resembles a gas but has certain properties that a gas does not have. Like a gas, plasma lacks a fixed volume and shape. Unlike a gas, plasma can conduct electricity and respond to magnetism. That’s because plasma contains charged particles called ions. This gives plasma other interesting properties. For example, it glows with light.

Where can you find plasmas? Two examples are shown in Figure 1.7. The sun and other stars consist of plasma. Plasmas are also found naturally in lightning and the polar auroras (northern and southern lights). Artificial plasmas are found in fluorescent lights, plasma TV screens, and plasma balls like the one that opened this chapter. You can learn more about plasmas at this URL: http://www.youtube.com/watch?v=VkeSI_B5Ljc (2:58).
Energy and Matter

Why do different states of matter have different properties? It’s because of differences in energy at the level of atoms and molecules, the tiny particles that make up matter.

Energy

Energy is defined as the ability to cause changes in matter. You can change energy from one form to another when you lift your arm or take a step. In each case, energy is used to move matter — you. The energy of moving matter is called kinetic energy.

Kinetic Theory of Matter

The particles that make up matter are also constantly moving. They have kinetic energy. The theory that all matter consists of constantly moving particles is called the kinetic theory of matter. You can learn more about it at the URL below.

http://www.youtube.com/watch?v=Agk7_D4-deY (10:55)

Energy and States of Matter

Particles of matter of the same substance, such as the same element, are attracted to one another. The force of attraction tends to pull the particles closer together. The particles need a lot of kinetic energy to overcome the force of attraction and move apart. It’s like a tug of war between opposing forces. The kinetic energy of individual particles is on one side, and the force of attraction between different particles is on the other side. The outcome of the "war" depends on the state of matter. This is illustrated in Figure 1.8 and in the animation at this URL: http://www.tutorvista.com/content/physics/physics-i/heat/kinetic-molecular-theory.php.

![Figure 1.8](image_url)

Kinetic energy is needed to overcome the force of attraction between particles of the same substance.
In solids, particles don’t have enough kinetic energy to overcome the force of attraction between them. The particles are packed closely together and cannot move around. All they can do is vibrate. This explains why solids have a fixed volume and shape.

In liquids, particles have enough kinetic energy to partly overcome the force of attraction between them. They can slide past one another but not pull completely apart. This explains why liquids can change shape but have a fixed volume.

In gases, particles have a lot of kinetic energy. They can completely overcome the force of attraction between them and move apart. This explains why gases have neither a fixed volume nor a fixed shape.

Lesson Summary

- A solid is matter that has a fixed volume and a fixed shape.
- A liquid is matter that has a fixed volume but not a fixed shape.
- A gas is matter that has neither a fixed volume nor a fixed shape.
- Like a gas, plasma lacks a fixed volume and shape. Unlike a gas, it can conduct electricity and respond to magnetism.
- The state of matter depends on the kinetic energy of the particles of matter.

Lesson Review Questions

Recall

1. What are states of matter?
2. What are the properties of solids?
3. State the properties of liquids.
4. Describe properties of gases.
5. How do plasmas compare with gases?

Apply Concepts

6. Apply the concept of surface tension to explain why the surface of water in the glass shown in the Figure 1.9 is curved upward. Why doesn’t the water overflow the glass?

Think Critically

7. Explain the relationship between energy and states of matter.

Points to Consider

You read in this lesson that gases expand to fill their container.

- What if gas were forced into a smaller container? Would it shrink to fit?
- What other properties of the gas might change if its particles were crowded closer together?
FIGURE 1.9
The surface of water in the glass is curved upward. How does surface tension explain this phenomenon?

References

2. CK-12 Foundation. . CC-BY-NC-SA 3.0
4. CK-12 Foundation. . CC-BY-NC-SA 3.0
8. CK-12 Foundation. . CC-BY-NC-SA 3.0
9. CK-12 Foundation - Joy Sheng. . CC-BY-NC-SA 3.0