SCIENTIFIC NOTATION

Name _

Scientists very often deal with very small and very large numbers, which can lead to a lot of confusion when counting zeros! We have learned to express these numbers as powers of 10.

Scientific notation takes the form of M x 10ⁿ where $1 \le M < 10$ and "n" represents the number of decimal places to be moved. Positive n indicates the standard form is larger than zero whereas negative n would indicate a number smaller than zero.

Example 1: Convert 1,500,000 to scientific notation. We move the decimal point so that there is only one digit to its left, a total of 6 places. $1.500.000 = 1.5 \times 10^6$

Example 2: Convert 0.000025 to scientific notation. For this, we move the decimal point 5 places to the right.

 $0.000025 = 2.5 \times 10^{-5}$

(Note that when a number starts out less than one, the exponent is always negative.)

Convert the following to scientific notation.

Chemistry IF8766		8	Cinstructional Fair, Inc.
5.	$2.2 \times 10^5 =$		4 x 10° =
4.	$3.75 \times 10^2 = $	9.	1 × 10 ⁻¹ =
3.	$3.75 \times 10^2 =$	8.	1 x 10 ⁴ =
2.	$1.5 \times 10^3 =$	7.	$1.2 \times 10^{-4} = $
1.	$1.5 \times 10^3 =$	6.	$3.35 \times 10^{-1} = $
Con	vert the following to standard notation.		
5.	1,000,000 =	10.	5,000 =
4.	1,000 =	9.	500 =
3.	0.0008 =	8.	0.0025 =
2.	5,050 =	7.	0.025 =
1.	0.005 =	6.	0.25 =

Scientific Notation

A. Do the worksheet on scientific notation on the back of this sheet.

B. Read Section 2.2 (Tro) and do these problems for practice: #3, 27-35 (odd).

C. Scientific Notation is usually written in a certain form. For instance, in this number

 6.022×10^{23} molecules

the 6.022 is called a coefficient (or "decimal", as Tro says). This coefficient is usually between 1 and 10. Sometimes, the coefficient is not between 1 and 10.

$$450 \times 10^{-9} \text{ nm}$$

In the number above, 450 is not between 1 and 10. To put it into the "standard" scientific notation, the decimal is moved from 450. to 4.50 (or 4.5) to make the number between 1 and 10. This is in effect dividing 450 by 100 (to get 4.5). However, we cannot simply write 4.5×10^{-9} nm (this is not the same as the number above—write it out in "decimal" form and check for yourself). To compensate for the *division* by 100, you must *multiply* the exponent part (10⁻⁹) by 100. 100 is 2 powers of 10 (it is 10×10). Therefore, you can add 2 powers of 10 to negative 9 powers of ten ($10^{(-9+2)}=10^{-7}$). Therefore,

 450×10^{-9} nm = 4.5×10^{-7} nm (both are in scientific notation, but the latter is in "standard" scientific notation).

1. Express the two numbers below in decimal form. Verify that they are the same.

 450×10^{-9}

 4.5×10^{-7}

2. Practice converting these to "standard" scientific notation:

 39×10^{-1}

 3859×10^{7}

 0.01×10^2

 423×10^1

 0.000078×10^{-9}

 53.498×10^{-34}

 $10000000 \times 10^{-100}$