SCIENTIFIC NOTATION

Sclentists very often deal with very small and very large numbers, which can lead to a lot of confusion when counting zeros! We have learned to express these numbers as powers of 10 .

Sclentific notation takes the form of $M \times 10^{0}$ where $1 \leq M<10$ and " n " represents the number of decimal places to be moved. Positive n indicates the standard form is larger than zero whereas negative n would indicate a number smaller than zero.

Example 1: Convert 1,500,000 to scientific notation. We move the decimal point so that there is only one digit to lits left, a total of 6 places.

$$
1,500,000=1.5 \times 10^{6}
$$

Example 2: Convert 0.000025 to scientific notation. For this, we move the decimal point 5 places to the right.

$$
0.000025=2.5 \times 10^{-5}
$$

(Note that when a number starts out less than one, the exponent is always negative.)

Convert the following to scientific notation.

1. $0.005=$ \qquad 6. $0.25=$ \qquad
2. $5,050=$ \qquad 7. $0.025=$ \qquad
3. $0.0008=$ \qquad 8. $0.0025=$ \qquad
4. $1,000=$ \qquad 9. $500=$ \qquad
5. $1,000,000=$ \qquad
6. $5,000=$ \qquad

Convert the following to standard notation.

1. $1.5 \times 10^{3}=$ \qquad 6. $3.35 \times 10^{-1}=$ \qquad
2. $1.5 \times 10^{3}=$ \qquad 7. $1.2 \times 10^{-4}=$ \qquad
3. $3.75 \times 10^{-2}=$ \qquad 8. $1 \times 10^{4}=$ \qquad
4. $3.75 \times 10^{2}=$ \qquad
5. $1 \times 10^{-1}=$ \qquad
6. $2.2 \times 10^{5}=$ \qquad
7. $4 \times 10^{0}=$
\qquad

Scientific Notation

A. Do the worksheet on scientific notation on the back of this sheet.
B. Read Section 2.2 (Tro) and do these problems for practice: \#3, 27-35 (odd).
C. Scientific Notation is usually written in a certain form. For instance, in this number

$$
6.022 \times 10^{23} \text { molecules }
$$

the 6.022 is called a coefficient (or "decimal", as Tro says). This coefficient is usually between 1 and 10. Sometimes, the coefficient is not between 1 and 10.

$$
450 \times 10^{-9} \mathrm{~nm}
$$

In the number above, 450 is not between 1 and 10. To put it into the "standard" scientific notation, the decimal is moved from 450 . to 4.50 (or 4.5) to make the number between 1 and 10 . This is in effect dividing 450 by 100 (to get 4.5). However, we cannot simply write $4.5 \times 10^{-9} \mathrm{~nm}$ (this is not the same as the number above-write it out in "decimal" form and check for yourself). To compensate for the division by 100, you must multiply the exponent part $\left(10^{-9}\right)$ by 100. 100 is 2 powers of 10 (it is 10×10). Therefore, you can add 2 powers of 10 to negative 9 powers of ten $\left(10^{(-9+2)}=10^{-7}\right)$. Therefore,

$$
450 \times 10^{-9} \mathrm{~nm}=4.5 \times 10^{-7} \mathrm{~nm}
$$

(both are in scientific notation, but the latter is in "standard" scientific notation).

1. Express the two numbers below in decimal form. Verify that they are the same.
450×10^{-9}
4.5×10^{-7}
2. Practice converting these to "standard" scientific notation:
39×10^{-1}
3859×10^{7}
0.01×10^{2}
423×10^{1}
0.000078×10^{-9}
53.498×10^{-34}
$10000000 \times 10^{-100}$
