Projectile Motion Worksheet

1) A ball rolls with a speed of $2.0 \mathrm{~m} / \mathrm{s}$ across a level table that is 1.0 m above the floor. Upon reaching the edge of the table, it follows a parabolic path to the floor. How far along the floor is the landing spot from the table? [0.90 m]
2) A rescue pilot drops a survival kit while her plane is flying at an altitude of 2000.0 m with a forward velocity of $100.0 \mathrm{~m} / \mathrm{s}$. If air friction is disregarded, how far in advance of the starving explorer's drop zone should she release the package? [2020 m]
3) A rifle is fired horizontally and travels 200.0 m [E]. The rifle barrel is 1.90 m from the ground. What speed must the bullet have been travelling at? Ignore friction. [$321 \mathrm{~m} / \mathrm{s}$]
4) A skier leaves the horizontal end of a ramp with a velocity of $25.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ and lands 70.0 m from the base of the ramp. How high is the end of the ramp from the ground? [38.5 m]
5) An astronaut stands on the edge of a lunar crater and throws a half-eaten Twinkie ${ }^{\mathrm{TM}}$ horizontally with a velocity of $5.00 \mathrm{~m} / \mathrm{s}$. The floor of the crater is 100.0 m below the astronaut. What horizontal distance will the Twinkie ${ }^{\mathrm{TM}}$ travel before hitting the floor of the crater? (The acceleration of gravity on the moon is $1 / 6^{\text {ih }}$ that of the Earth). [55.3 m]
6) A baseball player leads off the game and hits a long home run. The ball leaves the bat at an angle of 30.0° from the horizontal with a velocity of $40.0 \mathrm{~m} / \mathrm{s}$. How far will it travel in the air? [141 m]
7) A golfer is teeing off on a 170.0 m long par 3 hole. The ball leaves with a velocity of $40.0 \mathrm{~m} / \mathrm{s}$ at 50.0° to the horizontal. Assuming that she hits the ball on a direct path to the hole, how far from the hole will the ball land (no bounces or rolls)? [9.38 m]
8) A punter in a football game kicks a ball from the goal line at 60.0° from the horizontal at $25.0 \mathrm{~m} / \mathrm{s}$.
a) What is the hang time of the punt? [4.41 s]
b) How far down field does the ball land? [55.2 m]
9) A cannon fires a cannonball 500.0 m downrange when set at a 45.0° angle. At what velocity does the cannonball leave the cannon? $\left[70.0 \mathrm{~m} / \mathrm{s}\right.$ at $\left.45.0^{\circ}\right]$
10) A lovesick lad wants to throw a bag of candy and love notes into the open window of his girlfriend's bedroom 10.0 m above. Assuming it just reaches the window, he throws the love gifts at 60.0° to the ground:
a) At what velocity should she throw the bag? [$16.2 \mathrm{~m} / \mathrm{s}$ at 60.0° to the ground]
b) How far from the house is he standing when he throws the bag? [11.5 m]
11) You are piloting a helicopter which is rising vertically at a uniform velocity of 14.70 m / s. When you reach 196.00 m , you see Barney (Uh-oh). A large object is projected with a horizontal velocity of $8.50 \mathrm{~m} / \mathrm{s}$ from the rising helicopter.
a) When does the ball reach Barney's head if he is standing in a hole with his head at ground level? [7.99 s]
b) Where does Barney have to be horizontally relative to the helicopter's position? [68.0 m]
c) What is the vertical velocity when it hits the ground? $[-63.7 \mathrm{~m} / \mathrm{s}]$
12) An object is punted at $25.0 \mathrm{~m} / \mathrm{s}\left[40.0^{\circ} \mathrm{N}\right.$ of E$]$ on G's home planet. What is the range of the object on level ground? (Use g $=18.0 \mathrm{~m} / \mathrm{s}^{2}$) [34.2 m]
13) An elastic loaded balloon launcher fires balloons at an angle of $\left[38.0^{\circ} \mathrm{N}\right.$ of E$]$ from the surface of the ground. If the initial velocity is $25.0 \mathrm{~m} / \mathrm{s}$, find how far away the balloons are from the launcher when they hit the level ground again. [61.8 m]
14) A movie stunt driver on a motorcycle speeds horizontally off a 50.0 m high cliff. How fast (in km / h) must the motorcycle leave the cliff-top if it's to land on the level ground below at a distance of 90.0 m from the base of the cliff? $[101 \mathrm{~km} / \mathrm{h}]$
15) A football is kicked at 37.0° to the horizontal at $20.0 \mathrm{~m} / \mathrm{s}$ from the player's hand at 1.00 m from the ground. How far did the football travel before hitting the ground? [40.5 m]
16) The same football in \#15 is kicked from the ground instead.
a) Find the maximum height. [7.38 m]
b) Find the time of travel. [2.45 s]
c) How far away does it hit the ground? [39.2 m]
d) Find the velocity vector at maximum height. [$16.0 \mathrm{~m} / \mathrm{s}$ which is horizontal]
e) Find the acceleration vector at maximum height. [$9.81 \mathrm{~m} / \mathrm{s}^{2}$ down]
